Параллельная обработка Kafka сообщений с гарантией at-least-once в условиях медленного внешнего сервиса

В данной статье я хочу рассказать об подходе к организации параллельной обработки сообщений из Kafka, когда Kafka Topic используется как транспорт бизнес-событий, например транзакций или ордеров, которые необходимо отправить во внешнюю систему. При это важно обеспечить стабильную скорость обработки трафика и надёжность (отсутствие потерь) в условиях, когда downstream-система не на все запросы отвечает стабильно и быстро.

Покажу почему стандартные подходы, такие как обработка batch'ами, в определённых сценариях перестают работать и приводят к деградации производительности или рисками потери сообщений.

Для иллюстрации подходов далее будет использоваться код из демонстрационного проекта на Kotlin с использованием spring boot, webFlux, spring reactor и reactor-kafka. Код проекта не является production-ready: в нём, например, отсутствует обработка rebalance, а также ряд других моментов, обязательных для промышленной системы. Используется reactor-kafka, однако описываемые решения не зависят от конкретного фреймворка работы с Kafka и могут быть реализованы с использованием других.

В статье намеренно опущены детали реализации бизнес-протокола и механизма идемпотентности. В реальной системе они реализованы с использованием внутреннего хранилища и машины состояний обработки ордеров, но это за рамками данной статьи.

Читать далее

Читайте на сайте