News in English

Small-scale roughness entraps water and controls underwater adhesion | Science Advances

Trapped water in nanometer-scale asperities can decrease adhesion during approach and increase adhesion during pull-off.

Abstract

While controlling underwater adhesion is critical for designing biological adhesives and in improving the traction of tires, haptics, or adhesives for health monitoring devices, it is hindered by a lack of fundamental understanding of how the presence of trapped water impedes interfacial bonding. Here, by using well-characterized polycrystal diamond surfaces and soft, nonhysteretic, low–surface energy elastomers, we show a reduction in adhesion during approach and four times higher adhesion during retraction as compared to the thermodynamic work of adhesion. Our findings reveal how the loading phase of contact is governed by the entrapment of water by ultrasmall (10-nanometer-scale) surface features. In contrast, the same nanofeatures that reduce adhesion during approach serve to increase adhesion during separation. The explanation for this counterintuitive result lies in the incompressibility-inextensibility of trapped water and the work needed to deform the polymer around water pockets. Unlike the well-known viscoelastic contribution to adhesion, this science unlocks strategies for tailoring surface topography to enhance underwater adhesion.

Читайте на 123ru.net