News in English

Mapping protein conformations with fragments

Proteins can be remarkably dynamic, and, as we noted recently, different conformational states can reveal different pockets for small molecule ligands. But how can one survey and categorize all the possibilities? In a recent J. Chem. Inf. Model. paper, Doeke Hekstra and colleagues at Harvard University present a new tool for doing so.
 
High-throughput crystallographic fragment screens are becoming faster and more widely accessible, and the researchers wondered whether the information from these screens could be used to map protein conformational landscapes. To do so, they built a Python program called COLAV, short for COnformational LAndscape Visualization. This open-source tool can compile data from hundreds of protein coordinate files and then, for each protein, calculate the dihedral angles between backbone atoms, the pairwise distances between the alpha-carbon atoms, and the strain.
 
To a first approximation, dihedral angles capture local movements, while distances between alpha-carbons capture global movements, such as the distance between the N-terminus and C-terminus. Strain measurements are also local but can reveal particularly important features such as hinge movements. Also, while dihedral and pairwise distances can be calculated for single proteins, strain measurements are calculated after first aligning multiple structures.
 
Having calculated these three parameters for individual protein structures, COLAV can compare them across the selected set of structures using principal component analysis (PCA). These comparisons can reveal clusters with similar dihedral angles, pairwise distances, or strain.
 
The researchers provide two case studies. The first is the metabolic disease target PTP1B, which we recently wrote about here. This enzyme has been pursued intensively for decades, so the researchers were able to draw on 163 individual protein structures deposited in the protein data bank (PDB) as well as 187 structures from a high-throughput crystallographic fragment screen. PTP1B contains two flexible loops, each of which adopts one of two conformations, and COLAV successfully segregated all 350 structures into four clusters. Importantly, these four clusters were found whether the structures were pulled from the PDB (representing experiments conducted across multiple labs and years) or from the fragment screen, suggesting that a single crystallographic fragment screen can identify most or all of the conformational states available to a protein. This is particularly impressive given that most of the fragments bound in allosteric sites while most of the ligands found in the PDB bound in the active site.
 
Next, the researchers turned to the main protease (MPro) of SARS-CoV-2, the subject of intense and successful drug discovery efforts. They used 656 structures from the PDB and 631 structures from high-throughput crystallographic screens to perform COLAV analyses. Unlike PTP1B, discrete conformational clusters were not observed; rather a continuous band was seen, suggesting that the protein can assume myriad conformations. Here too though, the fragment screens were able to sample most of the conformations observed in the PDB.
 
The fact that a single high-throughput crystallographic screen can capture the conformations seen in hundreds of hard-won discrete protein-ligand crystal structures is encouraging, though of course the paper only describes two case studies. Also, as the researchers note, any structure that cannot be crystallized is not sampled. Since COLAV is free to use, it will be fun to see it applied to other proteins.

Читайте на 123ru.net