Thickness-dependent polaron crossover in tellurene | Science Advances
Abstract
Polarons, quasiparticles from electron-phonon coupling, are crucial for material properties including high-temperature superconductivity and colossal magnetoresistance. However, scarce studies have investigated polaron formation in low-dimensional materials with phonon polarity and electronic structure transitions. In this work, we studied polarons of tellurene, composed of chiral Te chains. The frequency and linewidth of the A
1
phonon, which becomes increasingly polar for thinner tellurene, change abruptly for thickness below 10 nanometers, where field-effect mobility drops rapidly. These phonon and transport signatures, combined with phonon polarity and band structure, suggest a crossover from large polarons in bulk tellurium to small polarons in few-layer tellurene. Effective field theory considering phonon renormalization in the small-polaron regime semiquantitatively reproduces the phonon hardening and broadening effects. This polaron crossover stems from the quasi–one-dimensional nature of tellurene, where modulation of interchain distance reduces dielectric screening and promotes electron-phonon coupling. Our work provides valuable insights into the influence of polarons on phononic, electronic, and structural properties in low-dimensional materials.