Boosting spatial and energy resolution in STM with a double-functionalized probe | Science Advances
Abstract
The scattering of superconducting pairs by magnetic impurities on a superconducting surface leads to pairs of sharp in-gap resonances known as Yu-Shiba-Rusinov (YSR) bound states. Similar to the interference of itinerant electrons scattered by defects in normal metals, these resonances reveal a periodic texture around the magnetic impurity. The wavelength of these resonances is, however, often too short to be resolved even by methods capable of atomic resolution, i.e., scanning tunneling microscopy (STM). We combine a CO molecule with a superconducting cluster pre-attached to an STM tip to maximize both spatial and energy resolution, thus demonstrating the superior properties of such double-functionalized probes by imaging the spatial distribution of YSR states. Our approach reveals rich interference patterns of the hybridized YSR states of two Fe atoms on Nb(110), previously inaccessible with conventional STM probes. This advancement extends the capabilities of STM techniques, providing insights into superconducting phenomena at the atomic scale.