Chordin-mediated BMP shuttling patterns the secondary body axis in a cnidarian | Science Advances
Abstract
Bone morphogenetic protein (BMP) signaling patterns secondary body axes throughout Bilateria and in the bilaterally symmetric corals and sea anemones. Chordin-mediated “shuttling” of BMP ligands is responsible for the BMP signaling gradient formation in many bilaterians and, possibly, also in the sea anemone
Nematostella
, making BMP shuttling a candidate ancestral mechanism for generating bilaterality. However,
Nematostella
Chordin might be a local inhibitor of BMP rather than a shuttle. To choose between these options, we tested whether extracellular mobility of Chordin, a hallmark of shuttling but dispensable for local inhibition, is required for patterning in
Nematostella
. By generating localized Chordin sources in the Chordin morphant background, we showed that mobile Chordin is necessary and sufficient to establish a peak of BMP signaling opposite to Chordin source. These results provide evidence for BMP shuttling in a bilaterally symmetric cnidarian and suggest that BMP shuttling may have been functional in the potentially bilaterally symmetric cnidarian-bilaterian ancestor.