Новости по-русски

В нарушении сверхпроводимости материалов оказался виноват водород

Однако вскоре стало очевидно, что эти впечатляющие результаты Стэнфорда не могут быть воспроизведены другими исследовательскими группами. Но Университет Туена в Вене нашел причину: в некоторых никелатах в структуру материала включены дополнительные атомы водорода. Это полностью меняет электрическое поведение материала. При изготовлении новых сверхпроводников этот эффект теперь необходимо учитывать.

Некоторые материалы являются сверхпроводящими только вблизи абсолютного нуля температуры — такие сверхпроводники не подходят для технических применений. Поэтому на протяжении десятилетий люди искали материалы, которые остаются сверхпроводящими даже при более высоких температурах. В 1980-х годах были открыты «высокотемпературные сверхпроводники». Но даже эти как бы высокие температуры на самом деле были совсем холодными: даже высокотемпературные сверхпроводники должны сильно охлаждаться, чтобы получить их сверхпроводящие свойства. Поэтому поиск новых сверхпроводников при еще более высоких температурах продолжается.

В течение долгого времени особое внимание уделялось так называемым купратам, то есть соединениям, содержащим медь. Вот почему был век меди. С этими купратами был достигнут некоторый важный прогресс, хотя сегодня в теории высокотемпературной сверхпроводимости остается много открытых вопросов.

Карстен Хельд из Института физики твердого тела в Университете Туена

Но в течение некоторого времени другие возможности также рассматривались. Уже существовал так называемый железный век на основе железосодержащих сверхпроводников. Летом 2019 года исследовательской группе Гарольда Хуанга из Стэнфорда удалось продемонстрировать высокотемпературную сверхпроводимость никелатов.

Однако после некоторого первоначального энтузиазма в последние месяцы стало очевидно, что никелевые сверхпроводники сложнее производить, чем первоначально предполагалось. Другие исследовательские группы сообщили, что их никелаты не обладают сверхпроводящими свойствами. Это очевидное противоречие было разъяснено в этом исследовании.

Основываясь на наших расчетах, мы уже предлагали никелаты в качестве сверхпроводников 10 лет назад, но они несколько отличались от тех, которые были обнаружены в настоящее время. Они относятся к купратам, но содержат атомы никеля вместо атомов меди.

Карстен Хельд из Института физики твердого тела в Университете Туена

Физики проанализировали никелаты с помощью суперкомпьютеров и обнаружили, что они чрезвычайно восприимчивы к воздействию водорода в материале. При синтезе некоторых никелатов могут быть включены атомы водорода, что полностью меняет электронные свойства материала. Однако этого не происходит со всеми никелатами. Расчеты показывают, что для большинства из них энергетически выгоднее включать водород, но не для никелатов из Стэнфорда. Даже небольшие изменения в условиях синтеза могут иметь значение. При этом сингапурские ученые сообщили, что им также удалось произвести сверхпроводящие никелаты.

Высокотемпературная сверхпроводимость — чрезвычайно сложная и трудная область исследований. Новые никелевые сверхпроводники вместе с нашим теоретическим пониманием и предсказательной силой компьютерных вычислений открывают совершенно новый взгляд на великую мечту физики твердого тела: сверхпроводник при температуре окружающей среды, который, следовательно, работает без какого-либо охлаждения.

Карстен Хельд из Института физики твердого тела в Университете Туена

Здесь же исследователи разрабатывали и использовали новые компьютерные методы расчета для понимания и прогнозирования свойств никелатов. Поскольку большое количество квантово-физических частиц всегда играет роль в одно и то же время, вычисления чрезвычайно сложны, но, комбинируя различные методы, можно оценить критическую температуру, до которой различные материалы являются сверхпроводящими. Так ученые смогли рассчитать допустимый диапазон концентрации стронция, для которого никелаты являются сверхпроводящими, и теперь этот прогноз подтвердился в эксперименте.

Читайте на 123ru.net