News in English

Transmission of dominant strains of Campylobacter jejuni and Campylobacter coli between farms and retail stores in Ecuador: Genetic diversity and antimicrobial resistance

by Lorena Montero, José L. Medina-Santana, María Ishida, Brian Sauders, Gabriel Trueba, Christian Vinueza-Burgos

Thermotolerant Campylobacter is an important zoonotic pathogen known for causing gastroenteritis in humans, with poultry as its primary reservoir. A total of 468 samples were collected, of which 335 were chicken carcass samples (representing the food component), and 133 were chicken caeca samples (representing the animal component). These samples underwent culture, with colonies examined under a microscope. Species identification was achieved through multiplex PCR. Additionally, antimicrobial susceptibility profiles were determined using the Kirby-Bauer method, testing for sensitivity to gentamicin, ciprofloxacin, tetracycline, and erythromycin. Additionally, 55 C. jejuni (62.5%) and 33 C. coli (37.5%) isolates were selected for whole genome sequencing (WGS). A High prevalence of Campylobacter was observed, with rates of 95.5% (n = 127, CI95%: 92.5% - 98.5%) in the animal component and 72.5% (n = 243, CI95%: 69.9% - 75.1%) in the food component. Specifically, C. jejuni was detected in 33.1% (n = 42) of poultry farms and 38.3% (n = 93) of chicken carcasses, while C. coli was found in 64.6% (n = 82) of poultry farms and 60.5% (n = 147) of chicken carcasses. Antimicrobials with the highest rates of resistance (67%-100%) were ciprofloxacin and tetracycline, in both animal and food component isolates. Erythromycin resistance was notable, ranging from 22% to 33%, with only two C. jejuni isolates from retail were resistant to gentamicin. Furthermore, multidrug resistance was identified in 23% (20 isolates) of the Campylobacter isolates. Genetic analysis revealed the presence of fourteen resistance genes in both C. jejuni and C. coli isolates, including tet(O), blaOXA-460, blaOXA-184, blaOXA-489, blaOXA-193, blaOXA-784, blaOXA-603, aph(3’)-IIIa, aad9, aph(2’’)-If, aadE-Cc, sat4, and ant(6)-Ia. Additionally, twenty-five plasmids were detected in the 88 Campylobacter isolates examined. Interestingly, most isolates also harbored genes encoding putative virulence factors associated with pathogenicity, invasion, adherence, and production of cytolethal distending toxin (cdt): cheV, cheA, cheW, cheY, flaA, flgR, flaC, flaD, flgB, flgC, ciaB, ciaC. The WGS analysis showed the presence of several cgSTs in both animal and food components, with nine of them widely disseminated between components. Moreover, C. coli and C. jejuni isolates from different sources presented less than 11 single nucleotide polymorphisms (SNPs), suggesting clonality (16 isolates). Further analysis using SNP tree demonstrated widespread distribution of certain C. jejuni and C. coli clones across multiple farms and retail stores. This study presents, for the first-time, insights into the clonality, plasmid diversity, virulence, and antimicrobial resistance (AMR) of thermotolerant Campylobacter strains originating from the Ecuadorian poultry industry. The identification of AMR genes associated with the main antibiotics used in the treatment of campylobacteriosis in humans, highlights the importance of the prudent use of antimicrobials in the poultry industry. Additionally, this research remarks the need for regional studies to understand the epidemiology of this pathogen.

Читайте на 123ru.net