News in English

Proximity labeling reveals new functional relationships between meiotic recombination proteins in S. cerevisiae

by Karen Voelkel-Meiman, Jennifer C. Liddle, Jeremy L. Balsbaugh, Amy J. MacQueen

Several protein ensembles facilitate crossover recombination and the associated assembly of synaptonemal complex (SC) during meiosis. In yeast, meiosis-specific factors including the DNA helicase Mer3, the “ZZS” complex consisting of Zip4, Zip2, and Spo16, the RING-domain protein Zip3, and the MutSγ heterodimer collaborate with crossover-promoting activity of the SC component, Zip1, to generate crossover-designated recombination intermediates. These ensembles also promote SC formation ‐ the organized assembly of Zip1 with other structural proteins between aligned chromosome axes. We used proximity labeling to investigate spatial relationships between meiotic recombination and SC proteins in S. cerevisiae. We find that recombination initiation and SC factors are dispensable for proximity labeling of Zip3 by ZZS components, but proteins associated with early steps in recombination are required for Zip3 proximity labeling by MutSγ, suggesting that MutSγ joins Zip3 only after a recombination intermediate has been generated. We also find that zip1 separation-of-function mutants that are crossover deficient but still assemble SC fail to generate protein ensembles where Zip3 can engage ZZS and/or MutSγ. The SC structural protein Ecm11 is proximity labeled by ZZS proteins in a Zip4-dependent and Zip1-independent manner, but labeling of Ecm11 by Zip3 and MutSγ requires, at least in part, Zip1. Finally, mass spectrometry analysis of biotinylated proteins in eleven proximity labeling strains uncovered shared proximity targets of SC and crossover-associated proteins, some of which have not previously been implicated in meiotic recombination or SC formation, highlighting the potential of proximity labeling as a discovery tool.

Читайте на 123ru.net