Integration of partially observed multimodal and multiscale neural signals for estimating a neural circuit using dynamic causal modeling
by Jiyoung Kang, Hae-Jeong Park
Integrating multiscale, multimodal neuroimaging data is essential for a comprehensive understanding of neural circuits. However, this is challenging due to the inherent trade-offs between spatial coverage and resolution in each modality, necessitating a computational strategy that combines modality-specific information effectively. This study introduces a dynamic causal modeling (DCM) framework designed to address the challenge of combining partially observed, multiscale signals across a larger-scale neural circuit by employing a shared neural state model with modality-specific observation models. The proposed method achieves robust circuit inference by iteratively integrating parameter estimates from local microscale and global meso- or macroscale circuits, derived from signals across various scales and modalities. Parameters estimated from high-resolution data within specific regions inform global circuit estimation by constraining neural properties in unobserved regions, while large-scale circuit data help elucidate detailed local circuitry. Using a virtual ground truth system, we validated the method across diverse experimental settings, combining calcium imaging (CaI), voltage-sensitive dye imaging (VSDI), and blood-oxygen-level-dependent (BOLD) signals—each with distinct coverage and resolution. Our reciprocal and iterative parameter estimation approach markedly improves the accuracy of neural property and connectivity estimates compared to traditional one-step estimation methods. This iterative integration of local and global parameters presents a reliable approach to inferring extensive, complex neural circuits from partially observed, multimodal, and multiscale data, showcasing how information from different scales reciprocally enhances entire circuit parameter estimation.