The first direct detection of spotted fever group Rickettsia spp. diversity in ticks from Ningxia, northwestern China
by Wen-Jie Zhu, Run-Ze Ye, Di Tian, Ning Wang, Wan-Ying Gao, Bai-Hui Wang, Zhe-Tao Lin, Ya-Ting Liu, Yi-Fei Wang, Dai-Yun Zhu, Yi Sun, Xiao-Yu Shi, Wen-Qiang Shi, Na Jia, Jia-Fu Jiang, Xiao-Ming Cui, Zhi-Hong Liu, Wu-Chun Cao
BackgroundTick-borne infectious diseases caused by the spotted fever group Rickettsia (SFGR) have continuously emerging, with many previously unidentified SFGR species reported. The prevalence of SFGRs in northwestern China remains unclear. This study aimed to examine the prevalence of SFGRs and Anaplasma species by analyzing tick samples collected from the Ningxia region.
MethodsDuring 2022–2023, ticks were collected from Ningxia, northwestern China, and screened using PCR to amplify target genes (16S rRNA, gltA, ompA and groEL). The amplicons were confirmed by Sanger sequencing. Single-gene sequences and concatenated sequences were used to infer phylogenetic relationships for identifying Rickettsia species.
ResultsOut of the 425 DNA samples, a total of 210 samples tested positive for SFGRs in ticks from Ningxia, China, with a relatively high positive rate of 49.4% (210/425). Eight spotted fever group rickettsiae and one Anaplasma species were identified and characterized, including Rickettsia raoultii (102, 24.0%), R. aeschlimannii (65, 15.3%), R. sibirica (12, 2.8%), R. slovaca (4, 0.9%), R. heilongjiangensis (1, 0.2%), Cadidatus Rickettsia hongyuanensis (4, 0.9%), Ca. R. jingxinensis (11, 2.6%), Ca. R. vulgarisii (11, 2.6%) and Anaplasma ovis (98, 23.1%). The positive rate of bacterial species ranged from 0.2% to 24.0%. Interestingly, one novel Rickettsia species, provisionally named “Candidatus Rickettsia vulgarisii”, was detected in Argas ticks from Zhongwei city, which suggests the possibility of local transmission to other areas through birds. Genetic and phylogenetic analysis based on the 16S rRNA, gltA, ompA, and 17kDa genes indicated that it was divergent from all known SFG Rickettsia species but mostly related to R. vini. Different SFGR species were associated with specific tick species or genera. In addition, Anaplasma ovis was detected in two Dermacentor species, and co-infection with SFGRs was observed in 14.6% (62/425) of samples.
ConclusionsThis study describes the prevalence and diversity of SFGRs in ticks from Ningxia for the first time by direct detection, reveals that Rickettsia diversity related to tick species. This data suggests that surveillance for tick-borne SFGR infections among human populations should be enhanced in this region, and further investigations on their pathogenicity to humans and domestic animals are still needed.