Создан фотонный процессор для быстрого и экономичного обучения нейросетей
Глубокие нейронные сети состоят из множества взаимосвязанных слоев узлов, или нейронов, которые осуществляют различные операции. Одна из ключевых операций требует использования линейной алгебры для выполнения умножения матриц. Но вдобавок к линейным операциям нейросети выполняют и нелинейные, помогающие моделям ИИ решать более сложные задачи. В 2017 году группа ученых из Массачусетского технологического института показала в действии оптическую нейросеть на одном фотонном чипе, которая выполняла умножение матриц светом. Читать дальше...